首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   92篇
  国内免费   9篇
工业技术   2025篇
  2023年   24篇
  2022年   22篇
  2021年   55篇
  2020年   52篇
  2019年   49篇
  2018年   67篇
  2017年   76篇
  2016年   69篇
  2015年   50篇
  2014年   68篇
  2013年   107篇
  2012年   74篇
  2011年   92篇
  2010年   78篇
  2009年   92篇
  2008年   71篇
  2007年   71篇
  2006年   51篇
  2005年   39篇
  2004年   45篇
  2003年   51篇
  2002年   45篇
  2001年   30篇
  2000年   29篇
  1999年   27篇
  1998年   54篇
  1997年   33篇
  1996年   43篇
  1995年   33篇
  1994年   40篇
  1993年   30篇
  1992年   26篇
  1991年   21篇
  1990年   23篇
  1989年   14篇
  1988年   22篇
  1987年   22篇
  1986年   22篇
  1985年   26篇
  1984年   22篇
  1983年   17篇
  1982年   11篇
  1981年   14篇
  1980年   13篇
  1979年   12篇
  1978年   17篇
  1977年   20篇
  1976年   10篇
  1973年   7篇
  1968年   6篇
排序方式: 共有2025条查询结果,搜索用时 47 毫秒
41.
In this study the main objective was to develop and demonstrate a glow discharge microplasma coupled to a miniature spectrometer for detection of fire signatures from pyrolyzing and burning spacecraft materials. Our experimental results demonstrate that combustion-produced carbonaceous aerosols can serve to identify the burning materials. Demonstrating versatility for chemistry analysis, the plasma detector could differentiate carbonaceous aerosols with different C/H ratios and distinguish inorganic samples such as salts and metal oxides from carbonaceous aerosols. In addition, in situ analysis of aerosol samples validated the microplasma’s analytical utility by linearity of its optical emission intensity with aerosol elemental composition.  相似文献   
42.
Hydrogen can be stored in containers or in materials (in molecular or atomic forms). The atomic form can further exist as multiple phases. Molecular hydrogen can be adsorbed on the surface or can be present inside the material. By invoking multiple modes of hydrogen storage, we establish a paradigm shift in the philosophy of hydrogen storage. Using a novel strategy of storage of molecular hydrogen in metal (Pd) nanocontainers, we observe that 18% hydrogen is in molecular form. Interestingly, this is achieved at 25 °C and 1 atm pressure; which is in contrast to storage in MOFs and carbonaceous materials like nanotubes. Enhancement in storage capacity as compared to Pd nanocrystals of the same mass is observed (36% increase at 1 atm & 25 °C), along with fast kinetics (0.5 wt% hydrogen absorption in 5 s). A new mechanism for hydrogen storage involving the dual catalytic role of Pd is established.  相似文献   
43.
44.
Employing first-principles density functional theory based calculations we investigated the change in electronic structure of CaCu3B4O12 compounds as one moves from 3d (Co) to 4d (Rh) to 5d (Ir) element at B site. Our study sheds light on valences of Cu and B ions as one moves from 3d to 4d to 5d based compounds. The valence of Cu in Co and Rh compound turn out to be that of less known 3+ state, while that in Ir compound turn out to be commonly known 2+ state. Our first-principles study provide microscopic understanding of these different valences of Cu, in terms of changes in the mixing of Cu x 2 − y 2 and B-a 1g states, driven by changes in the crystal field and spin splitting. The stronger crystal field splitting for 4d and 5d elements compared to 3d at B site drive the low-spin state at Rh and Ir site as opposed to intermediate spin in case of Co.  相似文献   
45.
The 231 km long Ken-Betwa River Linking canal will transfer 1,020 hm3 of surplus water from the Ken River to the deficit Betwa River basin. The landslide susceptibility zonation map of the river link has been assessed using remote sensing data in GIS. Various thematic maps such as geology, land use/land cover, lineament, drainage, slope, aspect, normalized difference vegetation index and soil type were generated from the Landsat Thematic Mapper 5 satellite data of 2005, the Survey of India topographic sheets, Shuttle Radar Topographic Mission Digital Elevation (SRTM-DEM) data and other existing maps. Numerical rating schemes were used for ranking the thematic layers. The results were supported with the rainfall data, groundwater level data and a petrological study of rock thin sections. In addition to providing valuable information for project decision-makers, the results will assist in slope management and land use planning in the area.  相似文献   
46.
Static and dynamic properties of both complementary n-Ge/p-Si and p-Ge/n-Si hetero-junction Double-Drift IMPATT diodes have been investigated by an advanced and realistic computer simulation technique, developed by the authors, for operation in the Ka-, V- and W-band frequencies. The results are further compared with corresponding Si and Ge homo-junction devices. The study shows high values of device efficiency, such as 23%, 22% and 21.5%, for n-Ge/p-Si IMPATTs at the Ka, V and W bands, respectively. The peak device negative conductances for n-Si/p-Ge and n-Ge/p-Si hetero-junction devices found to be 50.7 ? 106 S/m2 and 71.3 ? 106 S/m2, which are ~3-4 times better than their Si and Ge counterparts at the V-band. The computed values of RF power-density for n-Ge/p-Si hetero-junction IMPATTs are 1.0 ? 109, 1.1 ? 109 and 1.4 ? 109 W/m2, respectively, for Ka-, V- and W-band operation, which can be observed to be the highest when compared with Si, Ge and n-Si/p-Ge devices. Both of the hetero-junctions, especially the n-Ge/p-Si hetero-junction diode, can thus become a superior RF-power generator over a wide range of frequencies. The present study will help the device engineers to choose a suitable material pair for the development of high-power MM-wave IMPATT for applications in the civil and defense-related arena.  相似文献   
47.
ZnO nanorods of around 80 nm length and 30–60 nm diameter, encapsulated in chitosan were synthesized through co-precipitation technique and was characterized by XRD, UV–VIS, SEM, HRTEM, AFM and FTIR. The aim of the study was to investigate the attachment of chitosan capped zinc oxide nanoparticles (ZnO NP) with Escherichia coli bacterial outermost cell membrane and their mode of action against these bacteria. The detailed characterization studies were carried out to develop insight into the process of influence of these nanostructures on bacterial cells. Antibiotic characteristics of chitosan capped ZnO nanoparticles have been compared with Amoxicillin by zone of inhibition through cup plate method.  相似文献   
48.
Pioneering research suggests various modes of cellular therapeutics and biomaterial strategies for myocardial tissue engineering. Despite several advantages, such as safety and improved function, the dynamic myocardial microenvironment prevents peripherally or locally administered therapeutic cells from homing and integrating of biomaterial constructs with the infarcted heart. The myocardial microenvironment is highly sensitive due to the nanoscale cues that it exerts to control bioactivities, such as cell migration, proliferation, differentiation, and angiogenesis. Nanoscale control of cardiac function has not been extensively analyzed in the field of myocardial tissue engineering. Inspired by microscopic analysis of the ventricular organization in native tissue, a scalable in‐vitro model of nanoscale poly(L ‐lactic acid)‐co ‐poly(? ‐caprolactone)/collagen biocomposite scaffold is fabricated, with nanofibers in the order of 594 ± 56 nm to mimic the native myocardial environment for freshly isolated cardiomyocytes from rabbit heart, and the specifically underlying extracellular matrix architecture: this is done to address the specificity of the underlying matrix in overcoming challenges faced by cellular therapeutics. Guided by nanoscale mechanical cues provided by the underlying random nanofibrous scaffold, the tissue constructs display anisotropic rearrangement of cells, characteristic of the native cardiac tissue. Surprisingly, cell morphology, growth, and expression of an interactive healthy cardiac cell population are exquisitely sensitive to differences in the composition of nanoscale scaffolds. It is shown that suitable cell–material interactions on the nanoscale can stipulate organization on the tissue level and yield novel insights into cell therapeutic science, while providing materials for tissue regeneration.  相似文献   
49.
Ceramic nanocomposites of alumina and carbon nanotubes (CNTs) are experimentally studied for use as microwave absorbers in particle accelerators. The weight percentage of multi-walled CNTs in SPS sintered nanocomposite samples is varied from 0.5 to 10% and the complex permittivity is measured. The RF absorption is strong and relatively flat in the frequency band 1-40 GHz for a CNT weight percentage in the range 1-2.5%, which is just above the percolation threshold. The permittivity is observed to increase dramatically with increasing CNT weight percentage above the percolation threshold as observed elsewhere, and in accordance with theoretical treatments. The electromagnetic properties of the nanocomposites are little changed in going from 294 K to 77 K. The DC conductivity of the alumina-CNT nanocomposite is also sufficient to drain static charge in particle accelerator beamline environments, even at cryogenic temperatures. Fabrication of the nanocomposites using an industrial RF sintering process compatible with large sizes shows that the microwave absorption properties of small samples are similar to those of the SPS sintered samples.  相似文献   
50.
Although existence of MgAl2O4-γ-Al2O3 solid solution has been reported in the past, the detailed interactions have not been explored completely. For the first time, we report here a mathematical framework for the detailed solid solution interactions of γ-Al2O3 in MgAl2O4 (spinel). To investigate the solid solubility of γ-Al2O3 in MgAl2O4, Mg-Al spinel (MgO-nAl2O3; n = 1, 1.5, 3, 4.5 and an arbitrary high value 30) precursors have been heat treated at 1000°C. Presence of only non-stoichiometric MgAl2O4 phase up to n = 4.5 at 1000°C indicates that alumina (as γ-Al2O3) present beyond stoichiometry gets completely accommodated in MgAl2O4 in the form of solid solution. γα alumina phase transformation and its subsequent separation from MgAl2O4 has been observed in the Mg-Al spinel powders (n > 1) when the 1000°C heat treated materials are calcined at 1200°C. In the mathematical framework, unit cell of MgAl2O4 (Mg8Al16O32) has been considered for the solid solution interactions (substitution of Mg2+ ions by Al3+ ions) with γ-Al2O3. It is suggested that combination of unit cells of MgAl2O4 takes part in the interactions when n > 5 (MgO-nAl2O3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号